图像的亮度变换
亮度变换是指对每一个像素用同一个函数将原像素值进行运算,用运算结果代替原来的值。
亮度变换的函数与像素的位置无关,可以表示为:s = T(r),其中r为原始图像上像素的值,s是经过变换后的像素的值,T是亮度变换函数。
1. imadjust
在matlab中可以使用imadjust函数实现简单的像素亮度变换
g = imadjust(f, [low_in high_in], [low_out high_out], gamma)
f是要处理的图像。low_in和high_in是输入像素值的范围,low_out和high_out是输出像素值的范围,当范围取[ ]时就是默认[0 1]。gamma是曲线的形状,可以省略,默认是1。
例如
g1 = imadjust(f, [0 1], [1 0]); g2 = imadjust(f, [0.5 0.75], [0 1]); g3 = imadjust(f, [ ], [ ], 2);
图像翻转还可以用一个专门的函数来完成
g = imcomplement(f);
2. 对数和对比度拉伸
更复杂的变换需要用matlab的矩阵运算来实现。对数变换的公式如下:
g = c * log(1 + double(f));
另外一种变换函数叫作对比度拉伸函数,公式如下:
g = 1 ./ (1 + (m ./ (double(f)+eps) ).^E )
变换函数如下图所示:
例如:
g = im2uint8(mat2gray(log(1+double(f)))); imshow(g);
3. 处理可变数量的参数和返回值
要处理可变数量的输入输出,用nargin返回调用函数的参数个数,nargout返回值的个数。比如
number = nargin number = nargout
函数nargchk用于检查传递参数的个数是否正确
msg = nargchk(low, high, number)
当number小于low时,返回参数太少,当number大于high时返回参数太多,当number介于low和high之间,返回一个空矩阵。比如
error(nargchk(2, 3, nargin))
例子:书上例3.3
例子:gscale
直方图
数字图像在[0, G]之间总共有L个灰度级,其直方图表示为:
h(rk) = nk
其中rk是[0, G]内的第k级亮度,nk是灰度级为rk的图像中的像素数。因为matlab中数组下标从1开始,因此[0, G]各级的像素数分别存在下标1~G+1中。
归一化直方图是指h(rk)除以图像的像素总数n:
p(rk) = h(rk)/n = nk / n
在概率论上,p(rk)就表示灰度级rk出现的概率。
1. 绘制直方图
在matlab中,基本的直方图函数是imhist,
h = imhist(f, b)
其中,f为输入图像,h为其直方图,b是用于形成直方图的灰度级的个数。b可省略,默认值是256。比如
p = imhist(f, b)/numel(f);
例子:
h = imhist(f); h1 = h(1:10:256); horz = 1:10:256; bar(horz, h1); axis([0 255 0 15000]) set(gca, 'xtick', 0:50:255) set(gca, 'ytick', 0:2000:15000)
2. 直方图均衡化
原理是让直方图的分布尽可能均匀。算法是让直方图的概率分布函数(CDF)线性增长。
matlab中用histeq函数完成直方图均衡化:
g = histeq(f, nlev)
f为输入图像,nlev为输出图像的灰度级数。
例子
g = histeq(f, 256);
空间滤波
1. 背景知识
空间域处理:g(x, y) = T[f(x, y)],T定义在(x,y)的邻域内。
数字图像处理/Review_of_Linear_Systems.ppt
2. 线性滤波
一维信号的卷积
二维图像的卷积
在matlab中,使用imfilter来实现二维图像的卷积:
imfilter(f, w, fitering_mode, boundary_options, size_options)
其中,各参数的含义如下:
例如:
w = ones(31); gd = imfilter(f, w); imshow(gd, [ ]); gr = imfilter(f, w, 'replicate'); imshow(gr, [ ]); gs = imfilter(f, w, 'symmetric'); imshow(gs, [ ]); gc = imfilter(f, w, 'circular'); imshow(gc, [ ]);
常用的卷积核
3. 非线性滤波
卷积操作是计算乘积之和,是一个线性操作。非线性滤波则是对邻域内的像素进行非线性操作。比如
- 最大值滤波、最小值滤波
- 中值滤波
- 几何平均值
在matlab中可以使用ordfilt2函数实现最大值、最小值、中值滤波:
g = ordfilt2(f, order, domain)
对于中值滤波,matlab中有一个简便的函数可以使用:
g = medfilt2(f, [m n], padopt)
例如:
fn = imnoise(f, 'salt & pepper', 0.2); gm = medfilt2(fn); gms = medfilt2(fn, 'symmetric');
其他的非线性滤波可以用colfilt实现:
g = colfilt(f, [m n], 'sliding', @fun, parameters);