定义:如果存在函数<<latex: 执行失败 [Missing parentheses in call to 'print'. Did you mean print(...)?] (see also the log)>>的多项式界限的Turing机M,则f称为多项式时间可计算的。设<<latex: 执行失败 [Missing parentheses in call to 'print'. Did you mean print(...)?] (see also the log)>>是语言,设<<latex: 执行失败 [Missing parentheses in call to 'print'. Did you mean print(...)?] (see also the log)>>是多项式时间可计算得函数。如果对每个<<latex: 执行失败 [Missing parentheses in call to 'print'. Did you mean print(...)?] (see also the log)>>下列关系成立:<<latex: 执行失败 [Missing parentheses in call to 'print'. Did you mean print(...)?] (see also the log)>>当且仅当<<latex: 执行失败 [Missing parentheses in call to 'print'. Did you mean print(...)?] (see also the log)>>,那么<<latex: 执行失败 [Missing parentheses in call to 'print'. Did you mean print(...)?] (see also the log)>>称为从L1到L2的多项式归约。
双机调度
背包问题
引理:多项式归约传递性
定义:设<<latex: 执行失败 [Missing parentheses in call to 'print'. Did you mean print(...)?] (see also the log)>>是语言,如果<<latex: 执行失败 [Missing parentheses in call to 'print'. Did you mean print(...)?] (see also the log)>>并且对每一个语言<<latex: 执行失败 [Missing parentheses in call to 'print'. Did you mean print(...)?] (see also the log)>>存在从L'到L的多项式归约,那么L称为是NP完全的。
定理:设L是NP完全语言。那么P=NP当且仅当<<latex: 执行失败 [Missing parentheses in call to 'print'. Did you mean print(...)?] (see also the log)>>
有界铺砖
定理:有界铺砖是NP完全的。
Cook定理:可满足性是NP完全的。
定理:三元可满足性是NP完全的。
定理:最大可满足性是NP完全的。
定理:恰当覆盖是NP完全的。
定理:Hamilton圈是NP完全的。
定理:无向Hamilton圈是NP完全的。
定理:旅行商问题是NP完全的。
定理:背包问题是NP完全的。
推论:划分和双机调度都是NP完全的。
定理:独立集是NP完全的。
定理:团和顶点覆盖是NP完全的。
定理:无星号正则表达式的不等价性是NP完全的。